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Abstract.—A statistical framework to infer areas of endemism from geographic distributions is proposed. This novel method
is based on hidden Markov random fields (HMRFs), a type of undirected graph model commonly used in computer vision.
This framework assumes areas of endemism are the states of the hidden layer of the model, whereas taxon distributions
are emitted values in the observed layer. Taxon distributions are associated to the observed layer through a clustering
procedure based on the extent of overlap. Observations are emitted by the hidden layer according to a Gaussian distribution,
whereas the joint distribution of the hidden layer follows a Potts model. State and parameter inference of the maximum a
posteriori configuration is performed through a modified version of the expectation-maximization algorithm. The optimal
number of areas of endemism in the data set is estimated through the pseudolikelihood information criterion, a model
selection procedure that uses an approximation to likelihood. The performance of the new algorithm was assessed on
simulated data, and compared with the most popular methods for delimitation of areas of endemism: biotic element analysis,
parsimony analysis of endemism, and endemicity analysis. HMRFs efficiently recovered the true pattern across a wide range
of uncertainty values. The performance was also examined on empirical data: South African weevils (Sciobius) and Central
American ground beetles and funnel-web tarantulas (Carabidae and Dipluridae, respectively). HMRFs uncovered six areas
of endemism from the weevil data set, whereas eight were estimated for the Central American arthropods (compared with
3–5 and 3–14 from the other methods, respectively). [Areas of endemism; biogeography; geographic distributions; hidden
Markov random fields.]

Areas of endemism have been a fundamental concept
in systematic biology and have played an important
role in the development of historical biogeography. They
have been traditionally considered geographic regions in
which extensive distributional congruence among two
or more taxa exists (Nelson and Platnick 1981; Platnick
1991). Research on areas of endemism rose among
systematists three decades ago, as they were largely
deemed the logical operational units in vicariance
biogeography (Henderson 1991; Platnick 1991). Ever
since, their utility has been expanded beyond historical
biogeography, and they have being used to design
biogeographic regionalization schemes (Morrone 2014a),
suggest regions of interest for conservation (Martínez-
Hernández et al. 2015), or even study organism-climate
dynamics (Gámez et al. 2014). Although there are still
critical disputes regarding their conceptual definition
and philosophical foundations (e.g., Casagranda et al.
2009; Crother and Murray 2013; Morrone 2014b), they
are still a popular and effective way to describe spatial
biological patterns.

Several computational methods have been proposed
in the last 20 years to identify areas of endemism or
analogous patterns of geographic distribution (Morrone
1994; Szumik et al. 2002; Hausdorf and Hennig
2003). Although they all have different assumptions
and design, none can incorporate distributional
uncertainty into their calculations. Such a limitation is
very important, since geographic distributions are non-
deterministic by nature. That is, they cannot be predicted
with absolute certainty even if all possible information

regarding the organism and the system associated with
it were known (Real et al. 2017). A detailed description
of uncertainty levels pertaining to ecological processes
has been already presented by Regan et al. (2002),
and it will not be repeated here. However, it is worth
mentioning that some of the sources cited therein are
particularly relevant regarding distributional data:
measurement errors, either randomly distributed
or systematically biased (e.g., insufficient sampling,
taxonomic identification, geographic coordinates
retrieval and manipulation); stochastic variation due to
the interaction of deterministic processes that cannot
be completely accounted for (e.g., individual-level
interactions that affect population-level processes),
or well-known mechanisms that are inherently
random (e.g., molecular phenomena); as well as
model misspecification.

The challenge of incorporating uncertainty can be
overcome with the implementation of a statistical model
that facilitates the inference of areas of endemism from
imperfect distribution data. Here, we employ hidden
Markov random fields (HMRFs) as an appropriate
solution to this issue. We first present an introduction
to this class of models, describing their architecture and
probability computation techniques. This serves as the
basis for the following section, where a computational
framework to identify areas of endemism through
HMRF is developed. Performance of this method
is examined on both simulated and empirical data,
and compared with that of popular algorithms for
delimitation of areas of endemism. It is important
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FIGURE 1. Architecture of a hidden Markov random field. Nodes from the hidden state layer (black nodes, 0 or 1) emit the nodes of the
observed layer (white nodes, y0...y11) following a Gaussian function (emissions represented as arrows). Parameters of the Gaussian function (�
and �) are specific to each hidden state (in the example, state 0).

to note that the new framework is proposed as an
alternative to methods that require codification of
the distributions into a grid or a set of subareas.
Thus, it is not benchmarked against any method that
uses raw geographic coordinates as input, such as
network analysis (Dos Santos et al. 2008) or geographic
interpolation of endemism (Oliveira et al. 2015).

Hidden Markov Random Fields: Generalities
HMRFs are acyclic, graphical statistical models

widely used for computer vision processes, such as
segmentation, classification, and noise reduction (Li
2009). In the domain of comparative biology, they have
only been used for clustering genetic variants within
populations (François et al. 2006). A thorough and
didactic introduction to this class of models is presented
by Blake et al. (2011).

A HMRF consists of a set of nodes distributed in two
lattices of size T (Fig. 1). Nodes in the hidden layer are
the model states, and their values are integer labels from
the set L={1,2,...,l}:

X ={x1,x2,...,xT |xi ∈L}
Nodes in the observed layer are emissions, and their

values are real numbers:

Y ={y1,y2,...,yT |yi ∈R}
How can this model architecture be interpreted as an

area of endemism? First, assume that the geographic
distribution of each taxon is decoded as a grid of ones
(presence) and zeros (absence). A collection of taxa grids
(those that belong to the same area of endemism) can
be summarized into a single grid, each cell bearing the

average symbol recorded among all the taxa (Fig. 2). The
latter grid contains real values in the range [0.0−1.0]
and can be considered the observed layer in the model.
The area of endemism can be represented by the hidden
layer, the component that generates the geographic
distributions, a layer that is not observed but inferred.
This layer contains two possible states, 0 (meaning that
this cell does not belong to the area of endemism) or 1 (if
it does). Interactions among and within the layers will
be discussed next.

Given a state xi = l and its corresponding emission yi,
there is a conditional probability distribution:

p(yi |xi)= f (yi;�l)

where �l is the set of function parameters for the label
l. Emissions of a HMRF are usually modeled as Gaussian
processes, thus the conditional probability would be:

p(yi |xi)= 1

�l
√

2�
exp

(
− (yi −�l)2

2�2
l

)
(1)

where � and �2 are the mean and variance of the
emission function for label l.

Within the hidden layer X, relations among its nodes
are determined by a neighborhood system. Thus, for a
node xi, there is a set of neighbors

Ni ={xj |x∈X,distance(xi,xj)≤g}
where g is the neighborhood size (often called
neighborhood order). The architecture described above
is a HMRF only if it complies with both the positivity
(equation 2) and Markovianity (equation 3) conditions:

P(x)>0,∀x∈X (2)
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a) b) c)

FIGURE 2. Overview of the proposed framework. a) Taxon distributions are clustered based on a distance measure. In this example, five taxon
distributions are grouped in two clusters. b) Taxa distributions within a cluster (grids to the left) are summarized into a single grid (grid to the
right) that contains average values of presence (1) and absence (0). c) The summary grid is incorporated into the model as the observed layer
(top lattice), which is emitted by the hidden layer (bottom lattice), the representation of the area of endemism.

and

P(xi |X\xi)=P(xi |Ni) (3)

In lay terms, the probability axioms introduced above
indicate that 1) values of the taxa distribution grid are
emitted by the states in the area of endemism following
a Gaussian process (using Fig. 1 as reference, taxa
distributions would be the observed layer, and the area
of endemism would be the hidden layer), 2) there is
spatial correlation among adjacent cells within the area
of endemism, and 3) each area of endemism contains
two Gaussian functions: one for each state (0 or 1). The
Gaussian function associated to state 0 emits all the
“absences” in the observed layer, thus its mean would
be close to 0, whereas the state 1 function emits the
“presences”. In both cases, the variance would determine
the expected deviation from that mean in the emitted
values.

Gaussian probability functions are here employed to
model the relation between areas of endemism and
taxa distributions on the grounds of the central limit
theorem. Although it is unknown if these functions are
appropriate descriptors of the area of endemism process,
there is not information available to prefer an alternative
statistical function. Later on, it would be shown that this
choice does not affect the performance of the method.

The most important difference between HMRFs
and other Markov processes popular in computational
biology (such as Markov chains and hidden Markov
models) is the lack of directionality. This property
has a significant effect in the probability estimation
procedures. For example, the probability of an
individual state is conditional on all the other states in
the lattice:

P(xi)=P(xi | ...,xi−2,xi−1,xi+1,xi+2,...) (4)

In practical terms equation 4 implies that it is necessary
to evaluate all possible configurations of the lattice to
obtain P(xi). These conditional relations render the joint
probability of the hidden layer—P(X)—intractable, even
on small lattices. A solution to this problem is provided
by the Hammersley–Clifford theorem (Besag 1974): the
probability distribution P(X) can be achieved through
a Gibbs distribution with respect to subsets of nodes
(neighborhoods) in X:

P(X)= exp(−U(X))
Z

(5)

where U(X) is the energy function and Z is the
partition constant. The energy function is a measure of
homogeneity of states distribution across the HMRF.
The partition constant assures the distribution P(X)
sums up to 1—the sum of exp(U(X)) over all possible
configurations of states. Again, computing this Gibbs
distribution seems infeasible, as the estimation of the
partition constant necessarily entails the inspection of
all possible configurations of X. This difficulty is usually
overcome by using the logarithmic form of the function:

ln(P(X))∝−U(X)

The energy function can take several forms, but in all
cases it associates P(xi) exclusively with its neighbors
(Ni), relaxing the conditional rule (Equation 4). For this
application, the energy function is based on the Potts
model energy function:

U(X)=
T∑

i=0

�
∑
n∈Ni

{
1, if xi =n
0, otherwise (6)

where T is the number of nodes in the lattice, and � is
a parameter that modules space similarity within the
hidden layer.
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Maximum a Posteriori State Configuration
Finding the underlying state configuration of a HMRF

can be seen as an optimization problem: given a set of
observations Y, estimate the state configuration X that
maximizes the probability of the system. This is usually
achieved through Bayes rule:

P(X |Y)= P(Y |X)P(X)
P(Y)

For the purpose of maximum a posteriori state
estimation, the marginal distribution P(Y) can be
ignored since it will remain constant. Thus, the
alternative Bayes notation can be employed:

P(X |Y)∝P(Y |X)P(X)

The likelihood, P(Y |X), is the only term that can be
easily estimated using the Gaussian emission probability
function introduced above (equation 1). As mentioned
before, the main difficulty of calculating P(X) is the
partition constant Z. However, this can be overcome by
logarithmic simplification:

ln(P(X |Y))∝ ln(P(Y |X))+ln(P(X)) (7)

where

ln(P(Y |X))=−
T∑

i=0

(
(yi −�)2

2�2 +ln(�)

)

and ln(P(X)) is estimated with equation 6. In statistical
literature, terms in equation 7 are called likelihood energy
[ln(P(Y |X))], prior energy [ln(P(X))], and posterior energy
[ln(P(X |Y))].

MATERIALS AND METHODS

General Description of the Framework
The framework presented here models areas of

endemism as HMRFs, specifically as the hidden layer. As
mentioned in the introduction, taxon distributions are
assumed to be decoded as grids of ones (presence) and
zeros (absence). During the first step, taxon distributions
are clustered using a distance measure, which is a way
to estimate the degree of overlap (Fig. 2a). Distributions
within a group are summarized into a single grid by
averaging the observed values in every cell (Fig. 2b).
The resulting ensemble grid is then included in the
statistical process as the observed layer, which is emitted
by the hidden layer—the area of endemism (Fig. 2c). The
optimal number of areas are chosen through a model
selection procedure, the pseudolikelihood information
criterion (PLIC).

Clustering Procedure
Through the first step of the method taxon

distributions are clustered based on similarity. This
clustering procedure is largely based on partition

around medoids (PAM; Kaufman and Rousseeuw 1990).
Medoids are a subset of elements of the input set
ideally located at the center of each cluster. Thus, PAM
seeks to iteratively find optimal medoids and cluster
the remaining elements around the closest medoid. In
the first cycle, medoids are randomly selected from the
input set, but in the following cycles they are replaced by
randomly selecting other members from their respective
clusters. This is repeated until the composition of clusters
reaches stability. Although it is fast, this algorithm
is sensitive to outliers and can be easily stuck in
local optima. There are several variants of PAM that
aim to improve selection of initial medoids, or cluster
composition after the initial groups are formed (Daiyan
et al. 2012; Razavi Zadegan et al. 2013).

The clustering routine used here includes multiple
modifications from the simple PAM procedure
presented above. First, an additional parameter
(cohesion value c) is included. This parameter sets the
maximum distance allowed between medoids and their
linked elements. It also determines which elements
are outliers: if the distance between an element and
all medoids is greater than the cohesion parameter,
the element is appended to the outlier array. Second,
medoids are not elements from the input list but HMRFs
modeled upon them—namely, the hidden layer (Fig. 2c).
Third, HMRFs are retrieved through a presampling
process. This process involves modeling a new field
from each element, finding all the elements within a
distance c, and finally optimizing the field with the
values from the associated elements.

The similarity statistic employed in this clustering
step is the Kulczynski distance (Hubálek 1982) as
implemented by Hausdorf and Hennig (2003):

dK(A1,A2)=1− 1
2

( |A1 ∩A2|
|A1| + |A1 ∩A2|

|A2|
)

(8)

where A1 and A2 are two input areas, |Ax| their size, and
|A1 ∩A2| the number of cells their distributions intersect.
This function provides a good approximation to the
overlap among distributions because it is estimated upon
shared cell values across the grid. This distance measure
has been successfully used in the context of identification
of areas of endemism (Hausdorf and Hennig 2003).

Maximum a Posteriori State Configuration Estimation
Through the Expectation-Maximization Algorithm

Once a valid clustering hypothesis is attained—
that is, a set of presumptive areas of endemism
(HMRF’s hidden layers) and their respective associated
taxon distributions (HMRF’s observed layers)—state
configuration and parameter values of the model
are estimated through the expectation-maximization
algorithm (EM).

In general sense, EM is an iterative algorithm
composed of two basic routines: estimation of state
probabilities throughout the state path given the current
parameters (expectation), and update of the model

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/69/1/76/5492080 by guest on 18 M

ay 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:51 20/11/2019 Sysbio-OP-SYSB190033.tex] Page: 80 76–90

80 SYSTEMATIC BIOLOGY VOL. 69

parameters and state configuration (maximization). In
the first cycle of the algorithm, parameter and state path
values are chosen randomly, a property that usually
does not affect its efficiency to converge into the optimal
solution.

Although this algorithm has been widely used to
estimate parameters in hidden Markov models (Rabiner
1989)—the one-dimensional counterpart of HMRFs—
its full implementation in HMRFs is infeasible given
the impossibility to estimate conditional probabilities in
this class of models. However, several approximations
to EM have been proposed for HMRFs. Here, we
follow the proposal of Zhang et al. (2001), which is
based on the relaxation of conditional probabilities and
minimization of energy functions, an approach that
avoids the computation of posterior probabilities. This
approach can be described in the following steps:

1. Initialize the parameters (means and standard
deviations). To speed up the estimation, initial state
means are set to values close to 0 and 1.

2. State configuration is computed through the
iterated conditional nodes algorithm (Besag 1986).
This algorithm selects the state configuration that
minimizes the posterior energy (equation 7).

3. Estimate the posterior distribution for both states
at every cell. For each cell i in the grid S and each
state label l in L={0,1} compute:

P(l |yi)= P(yi | l)P(l |Ni)∑
l∈LP(yi | l)P(l |Ni)

where P(yi | l) corresponds to the equation 1 and
P(l |Ni) to equation 5.

4. Update model parameters using state expectations.
Therefore, the mean and standard deviation
update rules at time t+1 for the label l are:

�t+1
l =

∑
i∈SPt(l |yi)yi∑
i∈SPt(l |yi)

and

�t+1 =
(∑

i∈SPt(l |yi)(yi −�l)2∑
i∈SPt(l |yi)

)0.5

Therefore, two different outputs of the EM algorithm
will help to interpret its underlying hypothesis of area
of endemism: the state configuration in the hidden
layer, and the posterior probabilities calculated at every
hidden node. The former shows the geographic extent
of the area of endemism, and the latter the probability
that each cell belongs to the area of endemism.

Potts Model: Gamma Parameter
Although the EM algorithm can efficiently estimate

the mean and standard deviation of the model, the

gamma parameter is not updated. Therefore, a method
is required to estimate the spatial autocorrelation within
taxa geographic ranges and adjust the gamma parameter
accordingly. The observed correlation distribution is
estimated by randomly sampling cells among the input
observations and calculating the homogeneity with
reference to its neighbors. Subsequently, the gamma
value is selected through least squares. Candidate
values should be positive figures, as they indicate
correlation. For the purpose of the experiments, we
employed integers in the interval [1−30], which worked
accurately through the development stage of the
project.

Model Selection
Models with higher number of fields—and

parameters—naturally will have greater likelihood
values than simpler ones. Therefore, a model
selection procedure is required to avoid over-
parameterization. Popular model selection procedures
(Akaike information criterion, Bayesian information
criterion, etc.) cannot be used under the HMRF
framework, as they all require estimation of the
likelihood. The Pseudolikelihood Information Criterion
(PLIC) (Stanford and Raftery 2002) is an excellent
alternative; instead of estimating the actual model
likelihood it relies on pseudolikelihood values, a
tractable approximation especially suitable for graph
models (Besag 1975; Qian and Titterington 1992):

PL(Y |X)=
∏

i

f (yi |xi)P(xi |Ni) (9)

In equation 9, the first term within the product is
the Gaussian conditional probability introduced earlier
(equation 1), and the second term is a conditional
distribution based upon the Potts function:

P(xi =m |Ni,�)= exp(�U(Ni,m)∑
l∈Lexp(�U(Ni,l))

where the function U is the Potts function used to
estimate the prior energy (equation 6).

PLIC weights can be estimated using the
pseudolikelihood of the model:

PLIC(K)=2ln(PL(Y |X))−dK ln(N)

where K is the number of HMRFs, dK is the number of
parameters in the model K, N is the total number of grid
cells in the model K, and PL is the pseudolikelihood. The
behavior of pseudolikelihood function may differ from
the likelihood function when the number of parameters
are substantially different from the true model (Stanford
and Raftery 2002). Therefore, pairwise comparisons of
PLIC values are carried out progressively, from models
bearing a single field (one area of endemism) to models
with N/2 fields, the maximum number of areas allowed
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in any data set. A model mi (containing i HMRFs) is
selected when has a higher PLIC value than the next
model in terms of parameter complexity, mi+1.

An important caveat is the possibility that the
EM could select model parameters that imply high
pseudolikelihoods but are conceptually meaningless
under the present biogeographic framework. For
example, a very noisy set of observations can lead
the EM algorithm to output identical means for
both states (e.g., 0.5) or extremely wide variances.
In either case, the pseudolikelihood value of the
model would be high, but it would not be useful
to interpret the data, as all observations could be
emitted by any symbol and all cells could be part
of the area of endemism (1) or not (0). Therefore,
an additional term is included, the Bhattacharyya
weight, a coefficient that measures the distance
between two probability distributions (Bhattacharyya
1946). The form of the Bhattacharya coefficient used
here was proposed by Coleman and Andrews (1979)
to estimate the distance between two Gaussian
distributions:

B= 1
4

ln

(
1
4

(
�2

0

�2
1
+ �2

1

�2
0
+2

))
+ 1

4

(
(�0 −�1)2

�2
0 +�2

1

)

where �x and �x are the mean and standard deviation of
the Gaussian distribution x, respectively.

Experimental Validation: Simulated Data Sets
The performance of the new framework was tested

on simulated data, following an approach similar to
Casagranda et al. (2012). Two sets of experiments
were conducted: in the first one distributions were
simulated by simply producing the absence–presence
grid necessary for the analysis; but in the second
set datapoints in a plane coordinate system were
directly simulated, then distributions were coded into
an absence–presence grid. Besides these differences in
the simulation process, all experiments were very similar
regarding the analytical and postprocessing steps.

Simulations: experimental set 1. Every simulated data
set comprised 9–30 taxon distributions, and each

FIGURE 3. Simulated cases of areas of endemism (indicated as group of cells under some grade of shading). a) Non-problematic areas (case
0), b) nested areas (case 1), c) overlapping areas (case 2), and d) disjunct areas (case 3).
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distribution was a grid composed by 400 cells (20
columns × 20 rows). Values within a grid were ones
(presence) or zeros (absence). Simulated data sets were
meant to be explained by the presence of three areas of
endemism; that is, taxon distributions were intended to
be clustered in three groups, and each group should have
at least two components. Every time a taxon distribution
was simulated the underlying area of endemism was
used as template, then a randomly selected fraction of
its cells were recoded as absences (“0”) and another
group outside its limits as presences (“1”). The fraction
of cells undergoing this modification was set by a
predefined uncertainty value. This means that—besides
the data sets simulated with no uncertainty—all taxon
distributions within an area of endemism were not fully
overlaid.

Four parameters were used to simulate the complexity
of areas of endemism and their associated distributions:

Uncertainty: the probability a given distribution would
not conform to the symbol distribution of its underlying
area of endemism. Probability values were sampled
from a uniform statistical distribution. Two kinds
of uncertainty were considered depending on their
placement relative to the area of endemism: internal—
within its limits—and external—outside, but within two
cells of distance.

Non-clustering distributions: Distributions that do
not belong to any area of endemism. In clustering
terminology, outliers. Non-clustering distributions were
distributional grids filled with absence symbols (zeros),
except on either a column or a row randomly chosen
from a uniform distribution.

Distributions per area: Number of taxon distributions
simulated by each area of endemism.

Area pattern: Spatial arrangement of areas of endemism
inside the grid (as proposed by Casagranda et al. (2012)).
Four types are possible: non-problematic, overlapping,
nested, and disjunct (Fig. 3).

Three different experiments were conducted on
simulated data sets (Table 1). The aim of the first
experiment was to assess the impact of different
uncertainty values in the accuracy of the method. The
second experiment was designed to study the effect of
different levels of distribution congruence (measured as
the number of taxa supporting an area of endemism).
The purpose of the last experiment was to examine the
impact of noisy data sets (data sets with distribution
data that do not belong to any area of endemism) in the

algorithm performance. Ten data sets were simulated
for every combination of parameter values. HMRF
analyses were executed under a cohesion value of 0.3
and exhaustive combinatorial enumeration.

Besides the HMRF framework, each data set was
also analyzed under parsimony analysis of endemism
(PAE) [as perform in TNT (Goloboff and Catalano 2016)],
endemicity analysis (EA) [using NDM (Goloboff 2002)],
and biotic element analysis (BAE) [as implemented in the
R package prabclus (Hausdorf and Hennig 2003)]. TNT
searches were conducted on ten starting Wagner trees,
followed by 200 iterations of each ratchet and drift. Areas
of endemism were recovered as clades supported by
shared taxon acquisition events (0→1 synapomorphies)
in the consensus tree.

NDM analyses were conducted using default settings
(0.5 as factor for inferred presences, 0.5 as factor for
external records, 1.0 as acceptance factor, absences were
inferred if three surrounding cells were unoccupied,
presences if seven were occupied, new solutions were
proposed by deleting cells only, one cell was swapped at
a time, suboptimal solutions were not stored, however,
redundant areas were swapped and replaced as score
improves, areas were narrowly initialized, and one
replicate was executed per search). No consensus areas
were estimated from the NDM analysis, instead every
output solution was examined.

BAEs were executed using both Kulczynski distance
(BEA) and Geco coefficient (BEA-GECO). The latter
was introduced by Hennig and Hausdorf (2006) as an
improvement to classic similarity distance estimation. It
incorporates spatial correlation explicitly, a property that
helps to overcome the problem caused by missing data
in clustering tasks (Hennig and Hausdorf 2006). Besides
distance measure parameters, all other BEA variables
were set to default values. It is important to note that BEA
do not recover areas of endemism directly, but clusters of
taxa with similar distributions. However, it is possible to
infer the underlying geographic pattern of such clusters
by extracting the set of cells that contain more than 50%
of the taxa belonging to that cluster. Here, we consider
areas of endemism such sets of cells.

Accuracy was estimated as the frequency of detecting
the underlying areas of endemism on each data set.
The most objective way to measure success is to count
how often the area of endemism was exactly recovered
by the algorithm, but such a strict criterion would not
let the reader examine the performance of BEA, PAE,

TABLE 1. Parameter settings of experiments conducted on simulated data sets

Experiment Uncertainty level Distributions per area Non-clustering distributions

1 0.4, 0.35, 0.3, 0.25, 0.2,
0.15, 0.1, 0.05, 0.0 3 0

2 0.05 (2,2,5), (2,5,5), (5,5,5), (2,2,10), (2,5,10),
(2,10,10), (5,5,10), (5,10,10), (10,10,10) 0

3 0.05 3 0, 2, 4, 5, 8, 10
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and EA, since they only recovered the exact area in rare
occasions. Therefore, a result was accepted as positive if
its Kulczynski distance to the real area was < 0.2.

Simulations: experimental set 2. An additional set of
in silico experiments were conducted simulating the
distributional datapoints directly. The shape and spatial
arrangement of areas of endemism were the same
as above; that is, we kept the four scenarios design
proposed by Casagranda et al. (2012). Each area of
endemism was modeled as a couple of Gaussian
distributions (one for each plane axis) in which both
means matched the center of the area, and the standard
deviations a quarter of the area extent. We simulated
2–10 geographic distributions for each area of endemism,
and 10–1000 datapoints for each geographic distribution.
Datapoints were later coded into a presence–absence
grid, using 1 × 1 degree cells. Finally, data sets were
submitted to the same analytical procedures mentioned
in the previous paragraph. For the purpose of these
experiments, accuracy was measured as the frequency
of recovering all the distributions associated to each area
of endemism within the same cluster.

Two experiments were conducted with these data sets.
The first analysis was aimed to study the effect of point
density per distribution in the accuracy of each method.
We assumed that point density was an approximate
measurement of uncertainty, as distributions simulated
with higher densities imply better consistency with
the underlying area of endemism. In this analysis,
three geographic distributions were simulated for
each area of endemism, but different number of
datapoints were drawn: 10, 50, 100, 500, and 1000 per
distribution. The second experiment was focused on
the effect of distribution congruency in the delimitation
performance: the 500 datapoints were drawn for each

FIGURE 4. Accuracy of several methods under different values
of internal uncertainty. HMRF = hidden Markov random fields; EA =
endemicity analysis; BEA = biotic element analysis; BEA-GECO = biotic
element analysis based on Geco distance coefficients; PAE = parsimony
analysis of endemism.

distribution, but different number of distributions per
area of endemism were simulated: 2, 5, and 10.

Empirical Tests
The algorithm was tested on two empirical data sets:

1) South African weevil genus Sciobus Schoenherr [2-
degree matrix taken from Morrone (1994), with the
modifications from Mast and Nyffeler (2003)], and
2) Central American beetles Carabidae Latreille, and
spiders Dipluridae Simon [data set accessed from
Szumik and Goloboff (2004)]. Performance on the South
African data set was compared with results reported
by Mast and Nyffeler (2003) and Hausdorf and Hennig
(2003). Given that the analysis of this data set presented
by Szumik et al. (2002) did not included the changes
suggested by Mast and Nyffeler (2003), a reanalysis
of the corrected matrix under EA was executed with
the program NDM, using default settings. Custom PAE
and BEA analyses were also conducted on the Central
American arthropod data using TNT and prabclus,
respectively.

Code Implementation
The method here described is implemented in the

Python program “Gloria” (Geographic Location-Hidden
MarkOv Random fIeld Analysis). It is released under
GNU General Public License version 3 and available
at https://github.com/nrsalinas/gloria. The program
accepts a list of geographic coordinates as input, and
returns two files: a log file including some statistics of the
optimal solution (pseudolikelihood values, approximate
posterior probabilities, etc.) and a GeoJSON file per area
to facilitate visualization. A more detailed explanation

FIGURE 5. Accuracy of several methods under different values
of external uncertainty. HMRF = hidden Markov random fields; EA =
endemicity analysis; BEA = biotic element analysis; BEA-GECO = biotic
element analysis based on Geco distance coefficients; PAE = parsimony
analysis of endemism.
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FIGURE 6. Accuracy of several methods when internal and external
values are the same. HMRF = hidden Markov random fields; EA =
endemicity analysis. BEA = biotic element analysis; BEA-GECO = biotic
element analysis based on Geco distance coefficients; PAE = parsimony
analysis of endemism.

FIGURE 7. Accuracy of several methods when areas of endemism
have fluctuating observation composition. HMRF = hidden Markov
random fields; EA = endemicity analysis; BEA = biotic element
analysis; BEA-GECO = biotic element analysis based on Geco distance
coefficients; PAE = parsimony analysis of endemism.

about input format and analysis settings is provided in
the program website.

RESULTS

Simulated Data: Experimental Set 1
HMRFs accurately recovered the underlying areas

of endemism throughout the different treatments of
uncertainty. The new framework performed reasonably
well under values of internal uncertainty < 0.2, reaching
an accuracy rate above 80% (Fig. 4). Nevertheless, the
method was more sensitive to external uncertainty as
its accuracy was < 80% in all cases (Fig. 5). The best
performance was recorded in simulations that kept

FIGURE 8. Accuracy of several methods on data sets with solitary
distributions. HMRF = hidden Markov random fields; EA = endemicity
analysis; BEA = biotic element analysis; BEA-GECO = biotic element
analysis based on Geco distance coefficients; PAE = parsimony analysis
of endemism.

internal and external uncertainty at the same value,
reaching an accuracy of 80–100% when the overall
uncertainty level was less than 0.25 (Fig. 6).

Simulating a different number of distributions per
area did not affect the accuracy of HMRFs. The new
method nearly always recovered the three areas of
endemism in the set correctly (Fig. 7). EA and BEA
were only > 80% successful when most of the areas
were supported by 10 distributions each; otherwise their
accuracy (and that of PAE under all configurations)
was 25–80%. PAE, EA, and BEA generally resulted in
the same performance pattern across the parameter
space.

HMRFs achieved perfect accuracy when non-
clustering observations were included in the
simulations, they recovered all the areas in every
data set (Fig. 8). EA and BEA were negatively affected
by these noisy data sets, and their accuracy only reached
30–60%. PAE only recovered 10–20% of the areas of
endemism in simulated data sets.

Simulated Data: Experimental Set 2
When the analytical benchmark was submitted to data

sets of simulated datapoints, the results were highly
congruent with the first set of experiments. HMRFs were
more efficient than competing methods, followed by EA
(Fig. 9). When only few datapoints were simulated per
distribution (10–50), all methods failed consistently and
their accuracy did not reached 20%. However, when that
parameter was increased to 100 or more, HMRF and EA
greatly improved their performance (> 50%). In contrast,
the accuracy of PAE and BEA never was greater than
20%. Increasing the number of distributions per area
only changed notoriously the efficiency of BEA, the other
methods kept a more or less stable performance (Fig. 10).
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FIGURE 9. Accuracy of several methods on point-simulated data
sets when several values of record density are considered. HMRF =
hidden Markov random fields; EA, endemicity analysis; BEA = biotic
element analysis; PAE = parsimony analysis of endemism.

Sciobius Data set
The new framework identified six areas of endemism

from the Sciobius data set (Fig. 11). Supporting taxa
per area of endemism are shown in Table 3. Half of
the areas—areas 1, 2, and 3—were not recovered by
the other algorithms, whereas only two—areas 4 and
5—were consistently identified by all of the algorithms
(Table 2). Our area 1 is reminiscent of the element 1 in
Hausdorf and Hennig (2003), and area 2 is similar to an
area recovered from EA [analogous to area 3 in Szumik
et al. (2002)].

The other methods resulted in different numbers of
areas of endemism. According to Mast and Nyffeler
(2003), PAE recovered three areas (five if nested areas
are recognized), whereas BEA identified four elements
(Hausdorf and Hennig 2003). A custom EA analysis
on the corrected data set retrieved five areas. Species
composition between areas recovered by both HMRF
and the other algorithms was variable, ranging from 0.0
to 0.77 Jaccard of similarity.

Carabidae and Dipluridae Data set
The new framework identified eight areas of

endemism in the Carabidae and Dipluridae data set
(Fig. 12). Most of the areas are supported by just
two endemic species (Table 4). Only one area was
also retrieved by another algorithm: area 7, which was
recovered by BEA. However, species composition of this
area between both analyses was very dissimilar, as only
one species was shared.

Although HMRFs did not recover any area presented
by Szumik and Goloboff (2004), several areas of
endemism are similar between the two analyses:
our areas 2 and 7 resemble their sets 2 and 0,
respectively. Species composition is also similar: the

FIGURE 10. Accuracy of several methods on point-simulated data
sets when the number of distributions per area are different. HMRF =
hidden Markov random fields; EA = endemicity analysis; BEA = biotic
element analysis; PAE = parsimony analysis of endemism.

species supporting an area under the HMRF framework
also support the analogous EA area.

This data set has previously been reported to contain
14 areas of endemism, as identified through EA (Szumik
and Goloboff 2004). Custom analyses with BEA and PAE
returned three areas each.

DISCUSSION

The new method using HMRFs is a useful framework
for uncovering areas of endemism as shown by both
simulated and empirical experiments. It was particularly
efficient on simulated data sets with internal uncertainty,
often times recovering the true areas more efficiently
than competing algorithms. This does not mean that
the new method performs without errors across the
parameter landscape. It fails consistently under two
circumstances: 1) when uncertainty is greater than
0.3, and 2) in data sets without internal uncertainty.
The former case corresponds to extremely noisy
distributions, in which the signal of areas of endemism
has vanished to an extent difficult to overcome. The
failure of the latter case is paradoxical; the reader
would intuitively believe that a method performing
well under cases with moderate uncertainty should
perform even better on “perfect” data sets, devoid of
any noise. A detailed examination of the algorithm
and the simulated data sets revealed that HMRF only
failed consistently on data sets with nested areas—case
1 sensu Casagranda et al. (2012). In such cases, the
initial clustering algorithm fails to model a HMRF for
every area of endemism. In the absence of uncertainty,
the Kulczynski distance between nested areas decreases
below the cohesion parameter (0.3), and only one HMRF
is modeled. This artifact can be eliminated by decreasing
the cohesion value; however, using a low cohesion value
throughout the simulations would reduce the accuracy
of the method under more realistic values of uncertainty.
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FIGURE 11. Areas of endemism recovered from the Sciobius data set.

This phenomenon highlights the importance of selecting
an appropriate cohesion value for the analysis, since
unexpected interactions between grid extension and
size of areas of endemism can lead to spurious
results.

It is recommended to conduct a sensitivity analysis
with several candidate cohesion values (0.0–1.0)
before the final analysis is executed, particularly
when geographic distributions have significant size
differences. This should be coupled with a thorough
exploration of grid parameters (offset values and cell
size). If the biogeographic signal in the data set is

strong, areas of endemism shape and their supporting
species configuration will not change notoriously along
a gradient of the aforementioned parameters. It is also
advisable to check the set of geographic distributions
that support each area of endemism and confirm that
they actually overlap.

The new framework was robust under scenarios with
significant uncertainty, and it was also accurate across
several configurations of taxa diversity: few or numerous
taxa per area of endemism, and even or unequal taxa
distributions per area. Although the latter scenario
is a common property of real data sets, the other

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/69/1/76/5492080 by guest on 18 M

ay 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:51 20/11/2019 Sysbio-OP-SYSB190033.tex] Page: 87 76–90

2020 SALINAS AND WHEELER—STATISTICAL MODELING OF DISTRIBUTION PATTERNS 87

TABLE 2. Areas recovered by HMRF on the Sciobius data set,
and their correspondence to results from other algorithms

HMRF BEA PAE EA

1 (2) — — —
2 (3) — — —
3 (5) — — —
4 (13) 2 (17, 12 shared) 1 (6, all shared) 1
5 (7) 4 (10, 7 shared) 3 (11, 7 shared) —
6 (3) — 2’ (3, all shared) —

Note: Numbers outside the parentheses indicate area indexes used
by authors in their publications, numbers inside the parentheses are
the number of species supporting a given area. BEA results retrieved
from Hausdorf and Hennig (2003), PAE from Mast and Nyffeler
(2003), and EA from a custom analysis.

TABLE 3. Supporting species by area of endemism identified
in the Sciobius data set by HMRF analysis

Area of
endemism Species

1 Sciobius angustus, S. vittatus
2 Sciobius asper, S. capeneri, S. scapularis
3 Sciobius aciculatifrons, S. arrowi, S. granosus,

S. panzanus, S. thompsonii
4 Sciobius barkeri, S. bistrigicollis, S. brevicollis,

S. cognatus, S. cultratus, S. dealbatus, S. holmi, S.
marginatus, S. marshalli, S. prasinus, S. spatulatus,
S. tenuicornis, S. wahlbergii

5 Sciobius endroedyi, S. granipennis, S. lateralis,
S. planipennis, S. pondo, S. scholtzi, S. transkeiensis

6 Sciobius minusculus, S. nanus, S. schoenlandi

TABLE 4. Supporting species by area of endemism identified in
the Carabidae and Dipluridae data set by HMRF analysis

Area of endemism Species

1 Platynus rotundulatus, Elliptoleus balli
2 Platynus nitidulus, Platynus rugulellus
3 Platynus pygmaeus, Elliptoleus zapotecorum
4 Elliptoleus whiteheadi, Euagrus gus
5 Platynus degallieri, Platynus flavomarginatus
6 Platynus aeneipennis, Elliptoleus vixtriatus
7 Platynus machetellus, Elliptoleus luteipes, Elliptoleus

curtulus, Euagrus mexicanus
8 Elliptoleus crepericornis, Euagrus pristinus

algorithms were only accurate when simulated data sets
contained several taxa per area of endemism (namely,
10 per area).

Several reasons can explain the lack of accuracy of the
other methods. In the case of PAE, areas of endemism
are not properly optimized in the consensus tree. As
the uncertainty level increases, the resulting consensus
tree is mostly unresolved and contains polytomies.
On such trees, taxon acquisitions (apomorphic state
transformations) tend to be optimized across multiple
shallow branches (parallel gains), sometimes even as
autoapomorphies. This pattern departs widely from
the expected scenario, in which areas of endemism
are represented by clades subtended by uncontroverted
synapomorphies.

Experiments from simulated datapoints
(experimental set 2) support the previous discussion.
Probably the only interesting difference is that accuracy
of HMRF never reached 100% (85% in the most
favorable combination of parameters). We believe this
is a natural consequence of the experimental design.
Given that datapoints were drawn from joint Gaussian
distributions, areas of endemism do not have clear
boundaries. Therefore, the extent of the simulated
distributions greatly varied and did not necessarily
overlap, even if thousands of datapoints are drawn.
Moreover, grid cells located around the border zone are
prone to be coded as a presence, since it is only required
to harbor a single datapoint to be interpreted that way.

The lack of efficiency of EA seems to be rooted in the
way the heuristic search is executed. The program NDM
(Szumik and Goloboff 2004) starts the search using one
of the input distributions as a template for the initial
solution, then moves to new solutions by changing one
or two cells in the border every cycle. It is not clear if
internal cells within the current solution are modified
to guide future evaluations, but if this is not a recurrent
move the algorithm could have been in disadvantage to
find the optimal area in the experiments as half of the
uncertainty was simulated within the limits of the actual
area.

BEA finds areas of endemism through a four-step
clustering procedure: 1) a nonmetric multidimensional
scaling (NMDS) is executed on the distribution distance
matrix, 2) a mixture Gaussian model is fitted on the
n-dimensional vectors retrieved from step 1, 3) the
optimal number of clusters (biotic elements) in the model
are selected via Bayesian Information Criterion, and 4)
areas of endemism are retrieved from taxa distributions
within each cluster from the optimal solution. Part of
the limitation of this approach probably lays on how
the mixture model is optimized. Usually half of the
distributions in the simulated data sets were wrongly
classified as noise (either clustered in the “noise”
component or in “clusters” of a single element). This
artifact logically implies that chances of identifying the
correct set of clusters are reduced.

However, this behavior decreases as more
distributions per area are simulated. As demonstrated
in the third experiment (Table 1), BEA was extremely
efficient uncovering the true areas if data sets contained
10 taxa per area (Fig. 7). This may indicate that the
optimization of the mixture model could be sensitive to
the number of samples. Most of the simulated data sets
had three distributions per area of endemism, which
means that only three data points per component were
employed to estimate the parameters of the model. The
HMRF framework seems less prone to this drawback
since the sample units for parameter fitting are cells in
the grid, not distributions. Given the size of the grid
(20 × 20 cells), an area of endemism with only two
distributions would provide at least ca. 70 samples
for this task (the smallest simulated area of endemism
contained 36 cells).
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FIGURE 12. Areas of endemism recovered from the Carabidae and Dipluridae data set.

The experiments on empirical data were congruent
with the basic assumptions of an area of endemism and
validate the HMRF approach as a method to uncover
such a kind of geographic patterns. First, all areas
of endemism—in both data sets—were supported by
species of sympatric geographic distributions. Second,
most of the areas (except area 4 from the Sciobius data set

and area 8 from the Carabidae and Dipluridae data set)
were supported by taxa geographically restricted within
the boundaries of the area. In these cases, however, the
section of the range outside the area of endemism was
always smaller than the section inside.

The HMRF framework is a promising alternative
for modeling and representing geographic distribution
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patterns; however, there are some caveats that should
be considered. First, this framework assumes that the
geographic distribution of taxa supporting an area of
endemism should conform to a Gaussian distribution
on each cell of the grid. It is unknown whether
this assumption is appropriate regarding areas of
endemism, but this condition did not seem to affect
the performance of the new framework. Even though
the observations simulated for the experiments were
sampled from a uniform distribution, the new method
remained accurate. Furthermore, areas of endemism
were simulated with few distributions (max. = 10),
making it impossible to statistically test their cell-wise
distribution.

Another caveat is that analyses using the new
framework are more time intensive than other
programs, especially with difficult—noisy—data
sets. This behavior is partially due to the work overload
generated by the combinatorial optimization that the
search routine is based on. Currently, the program
“Gloria” offers an optimization shortcut that reduces
the set of candidate HMRFs to those with the highest
pseudolikelihoods. This can dramatically reduce the
computation on fuzzy data sets with many candidate
HMRFs, but does not guarantee the best solution
will be found. Other possible solutions to the time
overload are still in development, and they include the
implementation of multiprocessing and resampling
(e.g., bootstrap aggregating) routines.

There are several ways that this model can be
expanded or used to incorporate geographic uncertainty
into related comparative analyses. For example, the
model can be extended to accept cell values different
from present or absent, such as real numbers in the range
[0−1]. Under this premise, taxa distributions could be
probabilities taken from an analysis that assesses the
potential distribution of the taxa (e.g., niche modeling
probabilities).
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